Microbiota in disease-transmitting vectors

Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector–microbiota interactions.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens

Article 25 May 2023

The Anopheles coluzzii microbiome and its interaction with the intracellular parasite Wolbachia

Article Open access 14 August 2020

Characterization of the microbiome of Aedes albopictus populations in different habitats from Spain and São Tomé

Article Open access 04 September 2024

References

  1. World Health Organization. Global vector control response (2017–2030). World Health Organizationhttps://www.who.int/publications-detail-redirect/9789241512978/ (2017).
  2. Bogiitsh, B. J., Carter, C. E. & Oeltmann, T. N. Human Pararsitology 4th edn (Academic, 2013).
  3. World Health Organization. Vector-borne diseases. World Health Organizationhttps://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2020).
  4. Socha, W., Kwasnik, M., Larska, M., Rola, J. & Rozek, W. Vector-borne viral diseases as a current threat for human and animal health—One Health perspective. J. Clin. Med.11, 3026 (2022). ArticlePubMedPubMed CentralGoogle Scholar
  5. Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol.18, 587–600 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  6. Wondim, M. A. et al. Epidemiological trends of trans-boundary tick-borne encephalitis in Europe, 2000–2019. Pathogens11, 704 (2022). ArticlePubMedPubMed CentralGoogle Scholar
  7. Piotrowski, M. & Rymaszewska, A. Expansion of tick-borne rickettsioses in the World. Microorganisms8, 1906 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  8. Madison-Antenucci, S., Kramer, L. D., Gebhardt, L. L. & Kauffman, E. Emerging tick-borne diseases. Clin. Microbiol. Rev.33, e00083-18 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  9. Michelitsch, A., Wernike, K., Klaus, C., Dobler, G. & Beer, M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses11, 669 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  10. Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis.14, e0007831 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  11. Beaty, B. J. & Marquardt, W. C. The Biology of Disease Vectors (Univ. Press of Colorado, 1996).
  12. Jimenez-Cortes, J. G. et al. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop.186, 69–101 (2018). ArticlePubMedGoogle Scholar
  13. Song, X., Zhong, Z., Gao, L., Weiss, B. L. & Wang, J. Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol.38, 697–708 (2022). ArticleCASPubMedGoogle Scholar
  14. Shaw, W. R. & Catteruccia, F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat. Microbiol.4, 20–34 (2019). ArticleCASPubMedGoogle Scholar
  15. Moran, N. A. Symbiosis. Curr. Biol.16, R866–R871 (2006). ArticleCASPubMedGoogle Scholar
  16. Khachane, A. N., Timmis, K. N. & Martins dos Santos, V. A. Dynamics of reductive genome evolution in mitochondria and obligate intracellular microbes. Mol. Biol. Evol.24, 449–456 (2007). ArticleCASPubMedGoogle Scholar
  17. Malassigne, S., Valiente Moro, C. & Luis, P. Mosquito mycobiota: an overview of non-entomopathogenic fungal interactions. Pathogens9, 564 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  18. Altinli, M., Schnettler, E. & Sicard, M. Symbiotic interactions between mosquitoes and mosquito viruses. Front. Cell Infect. Micrbiol.11, 694020 (2021). ArticleCASGoogle Scholar
  19. Brito, T. F. et al. Transovarial transmission of a core virome in the Chagas disease vector Rhodnius prolixus. PLoS Pathog.17, e1009780 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  20. Kariithi, H. M. et al. Coevolution of hytrosaviruses and host immune responses. BMC Microbiol.18, 183 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  21. Gao, H., Cui, C., Wang, L., Jacobs-Lorena, M. & Wang, S. Mosquito microbiota and implications for disease control. Trends Parasitol.36, 98–111 (2020). ArticlePubMedGoogle Scholar
  22. Campolina, T. B., Villegas, L. E. M., Monteiro, C. C., Pimenta, P. F. P. & Secundino, N. F. C. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl. Trop. Dis.14, e0008666 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  23. Wang, S. et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science357, 1399–1402 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  24. Maffo, C. G. T. et al. Molecular detection and maternal transmission of a bacterial symbiont Asaia species in field-caught Anopheles mosquitoes from Cameroon. Parasit. Vectors14, 539 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  25. Caragata, E. P., Dutra, H. L. C., Sucupira, P. H. F., Ferreira, A. G. A. & Moreira, L. A. Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol.37, 1050–1067 (2021). ArticlePubMedGoogle Scholar
  26. Vasilakis, N. et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol.87, 2475–2488 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  27. Cappelli, A., Favia, G. & Ricci, I. Wickerhamomyces anomalus in mosquitoes: a promising yeast-based tool for the “symbiotic control” of mosquito-borne diseases. Front. Microbiol.11, 621605 (2020). ArticlePubMedGoogle Scholar
  28. Patterson, E. I., Villinger, J., Muthoni, J. N., Dobel-Ober, L. & Hughes, G. L. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Curr. Opin. Insect Sci.39, 50–56 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  29. Duron, O. & Gottlieb, Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol.36, 816–825 (2020). ArticleCASPubMedGoogle Scholar
  30. Attardo, G. M., Scolari, F. & Malacrida, A. Bacterial symbionts of tsetse flies: relationships and functional interactions between tsetse flies and their symbionts. Results Probl. Cell Differ.69, 497–536 (2020). ArticleCASPubMedGoogle Scholar
  31. Pais, R., Lohs, C., Wu, Y., Wang, J. & Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol.74, 5965–5974 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  32. Sasaki-Fukatsu, K. et al. Symbiotic bacteria associated with stomach discs of human lice. Appl. Environ. Microbiol.72, 7349–7352 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  33. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA107, 769–774 (2010). ArticleCASPubMedGoogle Scholar
  34. Stavru, F., Riemer, J., Jex, A. & Sassera, D. When bacteria meet mitochondria: the strange case of the tick symbiont Midichloria mitochondrii. Cell Microbiol.22, e13189 (2020). ArticleCASPubMedGoogle Scholar
  35. Salcedo-Porras, N., Umana-Diaz, C., Bitencourt, R. O. B. & Lowenberger, C. The role of bacterial symbionts in triatomines: an evolutionary perspective. Microorganisms8, 1438 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  36. Kariithi, H. M., Meki, I. K., Boucias, D. G. & Abd-Alla, A. M. Hytrosaviruses: current status and perspective. Curr. Opin. Insect Sci.22, 71–78 (2017). ArticlePubMedGoogle Scholar
  37. Neville, C. A. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).
  38. Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol.23, 2727–2739 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  39. Chouaia, B. et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol.12, S2 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  40. Wang, X. et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol. Ecol.27, 2972–2985 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  41. Vogel, K. J., Valzania, L., Coon, K. L., Brown, M. R. & Strand, M. R. Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae. PLoS Negl. Trop. Dis.11, e0005273 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  42. Coon, K. L. et al. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc. Natl Acad. Sci. USA114, E5362–E5369 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  43. Romoli, O., Schonbeck, J. C., Hapfelmeier, S. & Gendrin, M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host–microbiota interactions. Nat. Commun.12, 942 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  44. Wang, Y. et al. Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development. Proc. Natl Acad. Sci. USA118, e2101080118 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  45. Peterkova-Koci, K., Robles-Murguia, M., Ramalho-Ortigao, M. & Zurek, L. Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasit. Vectors5, 145 (2012). ArticlePubMedPubMed CentralGoogle Scholar
  46. Steyn, A., Roets, F. & Botha, A. Yeasts associated with Culex pipiens and Culex theileri mosquito larvae and the effect of selected yeast strains on the ontogeny of Culex pipiens. Microb. Ecol.71, 747–760 (2016). ArticleCASPubMedGoogle Scholar
  47. Harington, J. S. Studies on Rhodnius prolixus: growth and development of normal and sterile bugs, and the symbiotic relationship. Parasitology50, 279–286 (1960). ArticleCASPubMedGoogle Scholar
  48. Guizzo, M. G. et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci. Rep.7, 17554 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  49. Ben-Yosef, M. et al. Coxiella-like endosymbiont of Rhipicephalus sanguineus is required for physiological processes during ontogeny. Front. Microbiol.11, 493 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  50. Guizzo, M. G. et al. Coxiella endosymbiont of Rhipicephalus microplus modulates tick physiology with a major impact in blood feeding capacity. Front. Microbiol.13, 868575 (2022). ArticlePubMedPubMed CentralGoogle Scholar
  51. Zhong, Z. et al. Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe29, 1545–1557 (2021). ArticleCASPubMedGoogle Scholar
  52. Li, L. H., Zhang, Y. & Zhu, D. Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit. Vectors11, 242 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  53. Zhang, C. M. et al. Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. Exp. Appl. Acarol.73, 429–438 (2017). ArticlePubMedGoogle Scholar
  54. Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE2, e405 (2007). ArticlePubMedPubMed CentralGoogle Scholar
  55. Kurlovs, A. H., Li, J., Cheng, D. & Zhong, J. Ixodes pacificus ticks maintain embryogenesis and egg hatching after antibiotic treatment of Rickettsia endosymbiont. PLoS ONE9, e104815 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  56. Scolari, F. et al. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol.18, 169 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  57. Engl, T. et al. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol.18, 145 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  58. Liu, N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu. Rev. Entomol.60, 537–559 (2015). ArticleCASPubMedGoogle Scholar
  59. Mougabure-Cueto, G. & Picollo, M. I. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop.149, 70–85 (2015). ArticleCASPubMedGoogle Scholar
  60. Coles, T. B. & Dryden, M. W. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasit. Vectors7, 8 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  61. Soltani, A., Vatandoost, H., Oshaghi, M. A., Enayati, A. A. & Chavshin, A. R. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog. Glob. Health111, 289–296 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  62. Soh, L. S. & Veera Singham, G. Bacterial symbionts influence host susceptibility to fenitrothion and imidacloprid in the obligate hematophagous bed bug, Cimex hemipterus. Sci. Rep.12, 4919 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  63. Muturi, E. J., Dunlap, C., Smartt, C. T. & Shin, D. Resistance to permethrin alters the gut microbiota of Aedes aegypti. Sci. Rep.11, 14406 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  64. Pelloquin, B. et al. Overabundance of Asaia and Serratia bacteria is associated with deltamethrin insecticide susceptibility in Anopheles coluzzii from Agboville, Cote d’Ivoire. Microbiol. Spectr.9, e00157-21 (2021). ArticlePubMedPubMed CentralGoogle Scholar
  65. Omoke, D. et al. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malar. J.20, 77 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  66. Comandatore, F. et al. Phylogenomics reveals that Asaia symbionts from insects underwent convergent genome reduction, preserving an insecticide-degrading gene. mBio12, e00106–e00121 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  67. Sterkel, M., Oliveira, J. H. M., Bottino-Rojas, V., Paiva-Silva, G. O. & Oliveira, P. L. The dose makes the poison: nutritional overload determines the life traits of blood-feeding arthropods. Trends Parasitol.33, 633–644 (2017). ArticlePubMedGoogle Scholar
  68. Akman, L. et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat. Genet.32, 402–407 (2002). ArticleCASPubMedGoogle Scholar
  69. Smith, T. A., Driscoll, T., Gillespie, J. J. & Raghavan, R. A Coxiella-like endosymbiont is a potential vitamin source for the lone star tick. Genome Biol. Evol.7, 831–838 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  70. Hunter, D. J. et al. The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PLoS ONE10, e0144552 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  71. Duron, O. et al. Tick–bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol.28, 1896–1902 (2018). ArticleCASPubMedGoogle Scholar
  72. Sassera, D. et al. Phylogenomic evidence for the presence of a flagellum and cbb3 oxidase in the free-living mitochondrial ancestor. Mol. Biol. Evol.28, 3285–3296 (2011). ArticleCASPubMedGoogle Scholar
  73. Nikoh, N. et al. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc. Natl Acad. Sci. USA111, 10257–10262 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  74. Boyd, B. M. et al. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol. Biol. Evol.34, 1743–1757 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  75. Belda, E., Moya, A., Bentley, S. & Silva, F. J. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics11, 449 (2010). ArticlePubMedPubMed CentralGoogle Scholar
  76. Buysse, M. et al. A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum. eLife10, e72747 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  77. Binetruy, F. et al. Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks. Mol. Ecol.29, 1016–1029 (2020). ArticlePubMedGoogle Scholar
  78. Sonenshine, D. E. & Stewart, P. E. Microbiomes of blood-feeding arthropods: genes coding for essential nutrients and relation to vector fitness and pathogenic infections. A review. Microorganisms9, 2433 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  79. Chabanol, E., Behrends, V., Prevot, G., Christophides, G. K. & Gendrin, M. Antibiotic treatment in Anopheles coluzzii affects carbon and nitrogen metabolism. Pathogens9, 679 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  80. Guegan, M. et al. Mosquito sex and mycobiota contribute to fructose metabolism in the Asian tiger mosquito Aedes albopictus. Microbiome10, 138 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  81. Guegan, M. et al. Who is eating fructose within the Aedes albopictus gut microbiota? Environ. Microbiol.22, 1193–1206 (2020). ArticleCASPubMedGoogle Scholar
  82. Minard, G. et al. Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol. Ecol.83, 63–73 (2013). ArticleCASPubMedGoogle Scholar
  83. Caragata, E. P., Rances, E., O’Neill, S. L. & McGraw, E. A. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb. Ecol.67, 205–218 (2014). ArticleCASPubMedGoogle Scholar
  84. Nascimento da Silva, J. et al. Wolbachia pipientis modulates metabolism and immunity during Aedes fluviatilis oogenesis. Insect Biochem. Mol. Biol.146, 103776 (2022). ArticleCASPubMedGoogle Scholar
  85. Didion, E. M. et al. Microbiome reduction prevents lipid accumulation during early diapause in the northern house mosquito, Culex pipiens pipiens. J. Insect Physiol.134, 104295 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  86. Giraud, E. et al. Mosquito–bacteria interactions during larval development trigger metabolic changes with carry-over effects on adult fitness. Mol. Ecol.31, 1444–1460 (2022). ArticleCASPubMedGoogle Scholar
  87. Chen, S., Johnson, B. K., Yu, T., Nelson, B. N. & Walker, E. D. Elizabethkingia anophelis: physiologic and transcriptomic responses to iron stress. Front. Microbiol.11, 804 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  88. Martin, E. et al. The mycobiota of the sand fly Phlebotomus perniciosus: involvement of yeast symbionts in uric acid metabolism. Environ. Microbiol.20, 1064–1077 (2018). ArticleCASPubMedGoogle Scholar
  89. Ganley, J. G. et al. A systematic analysis of mosquito–microbiome biosynthetic gene clusters reveals antimalarial siderophores that reduce mosquito reproduction capacity. Cell Chem. Biol.27, 817–826 (2020). ArticleCASPubMedGoogle Scholar
  90. Feng, Y. et al. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota. Nat. Microbiol.7, 707–715 (2022). ArticleCASPubMedGoogle Scholar
  91. Molloy, J. C., Sommer, U., Viant, M. R. & Sinkins, S. P. Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl. Environ. Microbiol.82, 3109–3120 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  92. Manokaran, G. et al. Modulation of acyl-carnitines, the broad mechanism behind Wolbachia-mediated inhibition of medically important flaviviruses in Aedes aegypti. Proc. Natl Acad. Sci. USA117, 24475–24483 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  93. Haqshenas, G. et al. A role for the insulin receptor in the suppression of Dengue virus and Zika virus in Wolbachia-infected mosquito cells. Cell Rep.26, 529–535 (2019). ArticleCASPubMedGoogle Scholar
  94. Rio, R. V. et al. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: glossinidae) obligate symbiont Wigglesworthia. mBio3, e00240-11 (2012). ArticlePubMedPubMed CentralGoogle Scholar
  95. Rio, R. V. M. et al. Mutualist-provisioned resources impact vector competency. mBio10, e00018–e00019 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Wang, M. et al. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep.35, 108992 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  97. Kelly, P. H. et al. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. mBio8, e01121-16 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  98. Louradour, I. et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol.19, 10.1111 (2017). ArticleGoogle Scholar
  99. Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv.3, e1700585 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  100. Matetovici, I., De Vooght, L. & Van Den Abbeele, J. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes. Dev. Comp. Immunol.98, 181–188 (2019). ArticleCASPubMedGoogle Scholar
  101. Salcedo-Porras, N. & Lowenberger, C. The innate immune system of kissing bugs, vectors of chagas disease. Dev. Comp. Immunol.98, 119–128 (2019). ArticleCASPubMedGoogle Scholar
  102. Serafim, T. D. et al. Leishmaniasis: the act of transmission. Trends Parasitol.37, 976–987 (2021). ArticleCASPubMedGoogle Scholar
  103. Fogaca, A. C. et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol.12, 628054 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  104. Bartholomay, L. C. & Michel, K. Mosquito immunobiology: the intersection of vector health and vector competence. Annu. Rev. Entomol.63, 145–167 (2018). ArticleCASPubMedGoogle Scholar
  105. Weiss, B. L., Wang, J. & Aksoy, S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol.9, e1000619 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  106. Weiss, B. L., Wang, J., Maltz, M. A., Wu, Y. & Aksoy, S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog.9, e1003318 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  107. Weiss, B. L., Maltz, M. & Aksoy, S. Obligate symbionts activate immune system development in the tsetse fly. J. Immunol.188, 3395–3403 (2012). ArticleCASPubMedGoogle Scholar
  108. Trappeniers, K., Matetovici, I. & Van Den Abbeele, J. & De Vooght, L. The tsetse fly displays an attenuated immune response to its secondary symbiont, Sodalis glossinidius. Front. Microbiol.10, 1650 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  109. Benoit, J. B. et al. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife6, e19535 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  110. Meister, S. et al. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog.5, e1000542 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  111. Wang, J., Wu, Y., Yang, G. & Aksoy, S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc. Natl Acad. Sci. USA106, 12133–12138 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  112. Salcedo-Porras, N., Noor, S., Cai, C., Oliveira, P. L. & Lowenberger, C. Rhodnius prolixus uses the peptidoglycan recognition receptor rpPGRP-LC/LA to detect Gram-negative bacteria and activate the IMD pathway. Curr. Res. Insect Sci.1, 100006 (2021). ArticleCASPubMedGoogle Scholar
  113. Rodgers, F. H. et al. Functional analysis of the three major PGRPLC isoforms in the midgut of the malaria mosquito Anopheles coluzzii. Insect Biochem. Mol. Biol.118, 103288 (2020). ArticleCASPubMedGoogle Scholar
  114. Gao, L., Song, X. & Wang, J. Gut microbiota is essential in PGRP-LA regulated immune protection against Plasmodium berghei infection. Parasit. Vectors13, 3 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  115. Gendrin, M. et al. The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium. J. Innate Immun.9, 333–342 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  116. Xiao, X. et al. A Mesh–Duox pathway regulates homeostasis in the insect gut. Nat. Microbiol.2, 17020 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  117. Oliveira, J. H. et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog.7, e1001320 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  118. Diaz-Albiter, H., Sant’Anna, M. R., Genta, F. A. & Dillon, R. J. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis. J. Biol. Chem.287, 23995–24003 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  119. Wang, J. & Aksoy, S. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse’s offspring. Proc. Natl Acad. Sci. USA109, 10552–10557 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  120. Song, X., Wang, M., Dong, L., Zhu, H. & Wang, J. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis. PLoS Pathog.14, e1006899 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  121. Pang, X. et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat. Microbiol.1, 16023 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  122. Pan, X. et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J.12, 277–288 (2018). ArticleCASPubMedGoogle Scholar
  123. Rodrigues, J., Brayner, F. A., Alves, L. C., Dixit, R. & Barillas-Mury, C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science329, 1353–1355 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  124. Dey, R. et al. Gut microbes egested during bites of infected sand flies augment severity of leishmaniasis via inflammasome-derived IL-1β. Cell Host Microbe23, 134–143 (2018). ArticleCASPubMedGoogle Scholar
  125. Wei, N., Cao, J., Zhang, H., Zhou, Y. & Zhou, J. The tick microbiota dysbiosis promote tick-borne pathogen transstadial transmission in a Babesia microti-infected mouse model. Front. Cell Infect. Microbiol.11, 713466 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  126. Narasimhan, S. et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe15, 58–71 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  127. Abraham, N. M. et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl Acad. Sci. USA114, E781–E790 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  128. Wu, P. et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe25, 101–112 (2019). ArticleCASPubMedGoogle Scholar
  129. Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J. & Barillas-Mury, C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science327, 1644–1648 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  130. Rodgers, F. H., Gendrin, M., Wyer, C. A. S. & Christophides, G. K. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog.13, e1006391 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  131. Narasimhan, S. et al. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat. Commun.8, 184 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  132. Raddi, G. et al. Mosquito cellular immunity at single-cell resolution. Science369, 1128–1132 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  133. Ferreira Barletta, A. B. et al. Hemocyte differentiation to the megacyte lineage enhances mosquito immunity against Plasmodium. eLife11, e81116 (2022). ArticlePubMedGoogle Scholar
  134. Yan, Y. et al. The immune deficiency and c-Jun N-terminal kinase pathways drive the functional integration of the immune and circulatory systems of mosquitoes. Open Biol.12, 220111 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  135. Ramirez, J. L. et al. The role of hemocytes in Anopheles gambiae antiplasmodial immunity. J. Innate Immun.6, 119–128 (2014). ArticleCASPubMedGoogle Scholar
  136. Olmo, R. P. et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol.8, 135–149 (2023). ArticleCASPubMedGoogle Scholar
  137. Gao, H. et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase. Nat. Microbiol.6, 806–817 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  138. Valzano, M. et al. A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar. J.15, 21 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  139. Yu, X. et al. Lipases secreted by a gut bacterium inhibit arbovirus transmission in mosquitoes. PLoS Pathog.18, e1010552 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  140. Saraiva, R. G. et al. Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci. Rep.8, 6176 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  141. da Mota, F. F. et al. In vitro trypanocidal activity, genomic analysis of isolates, and in vivo transcription of type VI secretion system of Serratia marcescens belonging to the microbiota of Rhodnius prolixus digestive tract. Front. Microbiol.9, 3205 (2018). ArticlePubMedGoogle Scholar
  142. Zimmer, K. R. et al. Cattle tick-associated bacteria exert anti-biofilm and anti-Tritrichomonas foetus activities. Vet. Microbiol.164, 171–176 (2013). ArticleCASPubMedGoogle Scholar
  143. Apte-Deshpande, A., Paingankar, M., Gokhale, M. D. & Deobagkar, D. N. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS ONE7, e40401 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  144. Kaur, R. et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe29, 879–893 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  145. Alam, U. et al. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog.7, e1002415 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  146. Bian, G. et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science340, 748–751 (2013). ArticleCASPubMedGoogle Scholar
  147. Durvasula, R. V. et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl Acad. Sci. USA94, 3274–3278 (1997). ArticleCASPubMedPubMed CentralGoogle Scholar
  148. Wang, S. et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc. Natl Acad. Sci. USA109, 12734–12739 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  149. Shane, J. L., Grogan, C. L., Cwalina, C. & Lampe, D. J. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat. Commun.9, 4127 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  150. De Vooght, L., Caljon, G., De Ridder, K. & Van Den Abbeele, J. Delivery of a functional anti-trypanosome nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb. Cell Fact.13, 156 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  151. Yang, L. et al. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment. PLoS Pathog.17, e1009475 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  152. Taracena, M. L. et al. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl. Trop. Dis.9, e0003358 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  153. Ratcliffe, N. A. et al. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit. Vectors15, 112 (2022). ArticlePubMedPubMed CentralGoogle Scholar
  154. Maitre, A. et al. Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. Parasit. Vectors15, 4 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  155. Ben-Yakir, D. Growth retardation of Rhodnius prolixus symbionts by immunizing host against Nocardia (Rhodococcus) rhodnii. J. Insect Physiol.33, 379–383 (1987). ArticleGoogle Scholar
  156. Mateos-Hernandez, L. et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol.12, 704621 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  157. Mateos-Hernandez, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines8, 702 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  158. Azelyte, J. et al. Anti-microbiota vaccine reduces avian malaria infection within mosquito vectors. Front. Immunol.13, 841835 (2022). ArticleCASPubMedPubMed CentralGoogle Scholar
  159. Noden, B. H., Vaughan, J. A., Pumpuni, C. B. & Beier, J. C. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Parasitol. Int.60, 440–446 (2011). ArticlePubMedPubMed CentralGoogle Scholar
  160. Frankel-Bricker, J., Buerki, S., Feris, K. P. & White, M. M. Influences of a prolific gut fungus (Zancudomyces culisetae) on larval and adult mosquito (Aedes aegypti)-associated microbiota. Appl. Environ. Microbiol.86, e02334-19 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  161. Bai, L., Wang, L., Vega-Rodriguez, J., Wang, G. & Wang, S. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses. Front. Microbiol.10, 1580 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  162. Cappelli, A. et al. Asaia activates immune genes in mosquito eliciting an anti-Plasmodium response: implications in malaria control. Front. Genet.10, 836 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  163. Saraiva, R. G. et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl. Trop. Dis.12, e0006443 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  164. Ramirez, J. L. et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog.10, e1004398 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  165. Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell139, 1268–1278 (2009). ArticlePubMedGoogle Scholar
  166. Blandin, S. A., Marois, E. & Levashina, E. A. Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe3, 364–374 (2008). ArticleCASPubMedGoogle Scholar
  167. Tikhe, C. V. & Dimopoulos, G. Mosquito antiviral immune pathways. Dev. Comp. Immunol.116, 103964 (2021). ArticleCASPubMedGoogle Scholar

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (U1902211) and Science and Technology Leading Team from Inner Mongolia, China (2022SLJRC0023) to J.W.